Machine musicale - Tinkercademy

5-6 minutes

Buts

- Découvrez ADKeyboard
- Faire quelque chose avec ADKeyboard
- Faites quelque chose avec Mini Buzzer

Matériaux

- 1 x BBC micro:bit
- 1 x câble micro USB
- 1 x carte de dérivation
- 1 x mini buzzer
- 1 x ADKeyboard
- 2 x fils de raccordement femelle-femelle

Étape 1

- Après avoir connecté une extrémité du câble USB à votre ordinateur, connectez l'autre extrémité au micro:bit comme indiqué sur l'image
- Connectez le côté du micro: bit où se trouvent les broches à la carte de dérivation
- Connectez 2 fils au buzzer
- La broche sous le signe « + » sur le buzzer (généralement la *plus longue*) se connecte à la broche jaune sur la carte de dérivation, tandis que l'autre broche (généralement la *plus courte*) se connecte au noir.

Étape 2

- Branchez le *buzzer* sur la broche 0 (les broches à côté du chiffre « 0 » sur la carte de dérivation)
- Branchez l' ADKeyboard sur la broche 2
- Assurez-vous que la couleur du fil du buzzer et de l'ADKeyboard suit la couleur des broches sur la carte de dérivation

Étape 3 - Pré-codage

Nous devrons ajouter un paquet de code pour pouvoir utiliser les composants de notre kit. Cliquez sur **Avancé** dans le tiroir de code pour voir plus de sections de code et regardez en bas du tiroir de code pour **ajouter un package**.

	Add Package ?		
	Search or enter project URL		
	devices Camera, remote control and other Bluetooth services	bluetooth Bluetooth services	
Ce	la ouvrira une boîte de dialogue. Effe	ctuez une recherche pour tinkercademy ou	

simplement **tinker**. Cliquez sur l'icône de recherche ou appuyez sur Entrée, puis cliquez sur **tinkercademy-tinker-kit**.

Cliquez sur **Tinkercademy** ou **OLED** dans le **Code Drawer** pour trouver nos blocs personnalisés pour les différents composants de votre kit

Search	Q	↔ toggle LED at pin P0 ▼ Off ▼
III Basic		the key ALD is pressed on ADKeyboard at his PALD
⊙ Input		() Key A is pressed on Abkeybourd at printed
ନ Music		motion detector at pin P0 detects motion
C Led		♦ Setup crash sensor at pin P0 ▼
I Radio		crash sensor pressed
🖵 OLED		
C Loops		◊> value of moisture sensor at pin P0 ▼
≭ Logic		
Variables		
🖩 Math		
V Tinkercaden	ny	

Étape 4

- Ensuite, créons une instruction *conditionnelle* comme indiqué dans l'image (Ce bloc de code "si-alors" se trouve sous la section de code Logique du *tiroir de code*)
- Le code ci-dessous signifie que lorsque le bouton A est enfoncé sur l'ADKeyboard alors que l'ADKeyboard est branché à la broche P2 de la carte de dérivation, le buzzer émettra un son de 175 Hertz

-	forev	er										
	III sho	wi	con	Ħ								2
	0 if	_(ey A	🛛 is p	ressed	I on A	DKeyb	oard	at pin	P2	2
	then	Ģ	play	tone	175	for	(<mark>ဓ</mark>)	1 •	beat			54
	🧿 if	(k	ey B	🛛 is p	ressed	I on A	DKeyb	oard	at pin	P2	2
	then	Ģ	play	tone	196	for	(<mark>ດ</mark>)	1 7	beat			
	if	(k	ey C	is p	ressed	on A	DKeyb	oard	at pin	P2	2
	then	Ģ	play	tone	220	for	ا ه]	1 7	beat		1	0
	🧿 if	C	 k	ey D	is p	ressed	on A	DKeyb	oard	at pin	P2	2
	then	Ģ	play	tone	247	for	(<mark>_</mark> @	1 7	beat		4	
	🔯 if	t	 k	ey E	is p	ressed	on A	DKeyb	oard	at pin	P2	2
	then	Ģ	play	tone	262	for	(କ)	1 ,	beat			
-												

- Puisqu'il y a 5 boutons, nous devons coder 5 instructions conditionnelles similaires
- Chaque bouton "contrôle" un son d'une hauteur particulière et ainsi appuyer sur chaque bouton produit des sons de hauteurs différentes

Bravo ! Vous avez maintenant votre propre Micro:bit Music Machine

Détecteur de présence - Tinkercademy

4-5 minutes

Étape 0 - Aperçu de la pré-construction

Dans ce projet, nous allons créer une lumière qui ne s'allume que lorsqu'il y a quelqu'un dans une pièce en détectant un mouvement, à l'aide d'un capteur de mouvement PIR et d'une lumière LED.

MATÉRIAUX : 1 x BBC micro:bit, 1 x câble micro USB, 1 x carte de dérivation, 1 x capteur PIR, 1 x LED

Buts

- Faites quelque chose avec le détecteur de mouvement PIR
- Faire quelque chose qui est facilement applicable dans la vraie vie

Étape 1 - Composants

Insérez le micro:bit dans le Breakout Board et branchez le capteur PIR dans la broche 0.

Branchez la LED sur la broche 1. Assurez-vous pour les deux composants que les couleurs des fils correspondent aux couleurs des broches.

Étape 2 - Pré-codage

Nous ajouterons un paquet de code pour nous permettre d'utiliser les composants de notre kit. Cliquez sur **Avancé** dans le tiroir de code pour voir plus de section de code et regardez en bas du tiroir de code pour **ajouter un package**.

Add Package			?	×
Search or enter project URL				Q
devices Camera, remote control and other Bluetooth services	bluetooth Bluetooth services	neopixel AdaFruit NeoPixel driver		

Cela ouvrira une boîte de dialogue. Copiez et collez le lien suivant dans le champ de texte **Ajouter un package...** : https://makecode.microbit.org/50544-64675-33322-24641. Cliquez sur l'icône de recherche ou appuyez sur Entrée, puis cliquez sur le bouton **Tinkercademy**.

Remarque : Si vous recevez un avertissement vous indiquant que certains packages seront supprimés en raison de problèmes d'incompatibilité, suivez les invites ou créez un nouveau projet dans le menu Fichier de projets.

Étape 3 - Codage

	Search Q	♦ toggle LED at pin P0 → Off →
	III Basic	
	⊙ Input	<pre> key A • is pressed on ADKeyboard at pin P0 •</pre>
	G Music	<pre> motion detector at pin P0 • detects motion</pre>
	C Led	
	I Radio	K) Setup crash sensor at pin P0 -
\circ \circ \circ \circ	🖵 OLED	<pre> crash sensor pressed</pre>
0 1 1 2 3V GND	C Loops	<pre>value of moisture sensor at pin P0 •</pre>
	🔀 Logic	
	≡ Variables	
	🖩 Math	
	A	

Cliquez sur **Tinkercademy** dans le Code Drawer pour trouver nos blocs personnalisés pour les différents composants de votre kit.

Basic	+											Getting	Starte	ed
⊙ Input	- +·													
G Music			fore	/er										
C Led	+:		if	لے	> mot	ion d	etecto	r at i	oin P0	🔽 de	tects	motion	÷	
I Radio			then		toggle	LED a	it pin	P1 •	On V	+				
🖵 OLED	÷.		eise	<>>	toggle	LED a	it pin	P1 ▼	0++ •					
C Loops		+	+											
🔀 Logic	+													
🔳 Variables														
🖬 Math														
> Tinkercademy														
✓ Advanced				+								+		

Pour ce projet, aucune initialisation n'est requise (woohoo !), et il n'y a pas beaucoup de code de toute façon.

Si un mouvement est détecté par le capteur PIR, la lumière est déclenchée. Ou bien, la lumière est éteinte. Assez simple.

Étape 4 - Succès !

Voilà ! Vous avez créé une simple lumière intelligente ! Entrez dans la pièce et laissez la lumière être !

Modulateur de sons - Tinkercademy

6-7 minutes

Créer un Electro-Theremin

Découvrez les sons funky de la musique électrique "analogique"

Buts

- Apprenez à utiliser un capteur analogique avec le micro:bit.
- Fabriquez un électro-thérémine !

!

Matériaux

- 1 x BBC micro: bit
- 1 x câble micro USB
- 1 potentiomètre
- 1 sonnerie
- 2 fils de cavalier FF

Étape 1

 Branchez votre buzzer à la broche 0, en vous assurant que le fil positif est connecté à la broche de signal jaune et que le fil négatif est connecté à la broche de terre noire sur la carte de dérivation. • Branchez le potentiomètre sur la broche 1, faites correspondre les couleurs des fils à celles de la carte de dérivation !

Étape 2

- Dans Makecode, nous suivrons la valeur du potentiomètre à l'aide d'une variable. Les variables sont comme des seaux qui peuvent contenir des valeurs changeantes.
- Créez une nouvelle variable appelée *lecture* (ou tout ce que vous voulez, vraiment) dans le tiroir **Variable**.
- Nous voulons régler constamment notre variable de *lecture* sur la valeur analogique du potentiomètre au lieu du numérique.
- La lecture de la valeur analogique nous permet d'accéder à toute une gamme de signaux du potentiomètre, au lieu d'un simple 1 ou 0 numérique. Retrouvez ce bloc dans le tiroir **Pins**.

Étape 3

• Vérifiez vos valeurs minimales et maximales pour votre potentiomètre en affichant le numéro de la variable de *lecture*.

- Tourner le bouton dans le sens inverse des aiguilles d'une montre jusqu'au bout vous donne le minimum, et dans le sens des aiguilles d'une montre jusqu'au bout vous donne le maximum.
- Remarquez comment les valeurs sautent ? C'est parce que le micro:bit prend un certain temps pour faire défiler un grand nombre sur l'écran, et au moment où vous lisez une nouvelle valeur, le potentiomètre serait bien en avance !

set reading v to () analog read pin P1 v show number (reading v	forever set reading to (© analog read pin P1 t show number (reading t									
set reading to () analog read pin P1 v show number (reading v	set reading to () analog read pin P1 to ()	fo	rever							
<pre>show number reading </pre>	show number Freading	set	read	ling 🔹) to (🌀 a	nalog	read	pin P	1 •
	+ + + + + + + +		show	numbe	r I 🗖	eadin	g v			
				+	+	+	+			

set note • to (. © map	(reading •	+ -			
	from low	4				
	from high	1023				
	to low	131				
	to high	988				
	z) 🚺 🙃 988	+	+ -	+ +	+	+
+ + +	+					
		• • • •	┩┩	•••	┩┩	•••
	+					

Étape 4

- Nous allons maintenant utiliser ces valeurs que vous venez de lire sur votre potentiomètre pour tracer vos notes !
- Nos blocs de musique peuvent ne pas avoir une plage aussi large que votre potentiomètre. Dans ce cas, nous voulons nous assurer que la valeur la plus élevée du potentiomètre correspond toujours à la note la plus haute que nous pouvons jouer.
- Vérifiez la valeur des notes les plus basses et les plus hautes dans les touches du piano micro:bit.
- Utiliser le bloc carte du tiroir **Pins** pour saisir toutes les valeurs.

Étape 5

- Vous avez peut-être remarqué que nous avons créé une autre variable appelée *note* à l'étape précédente, assurez-vous de définir la variable *note* sur les valeurs mappées.
- Faites sonner la tonalité en utilisant la variable note .
- Téléchargez le tout dans votre micro:bit et vous êtes prêt à faire du bruit !

Truc cool!

Maintenant que vous avez appris à jouer avec le potentiomètre, vous pouvez essayer de l'utiliser pour contrôler les LED, les servos et d'autres composants ! Et si vous mettez la main sur un autre capteur analogique, vous saurez vous en servir !

Boite sous alarme - Tinkercademy

5-7 minutes

Étape 0 - Aperçu de la pré-construction

Dans ce projet, nous allons créer une simple machine d'alarme qui alertera le propriétaire si quelqu'un a volé sa propriété. La LED rouge clignote lorsque le capteur de collision détecte

que l'objet a été emporté. Sinon, la LED verte s'allumera en permanence. L'OLED affichera l'état de la machine.

MATÉRIAUX : 1 x BBC micro:bit, 1 x câble micro USB, 1 x carte de dérivation, 1 x LED Octopus, 1 x capteur de collision, 1 x OLED, 1 x LED, 2 x fils de raccordement femelle-femelle

Buts

- Apprenez à connaître la LED Octopus, la LED normale et le capteur de collision
- Fabriquer quelque chose avec différents types de LED
- Faites quelque chose avec le capteur de collision et l'OLED

Étape 1 - Composants

Connectez 2 fils cavaliers femelle-femelle à la LED. La broche **positive (généralement plus longue)** de la LED se connecte à la broche **jaune de la carte de dérivation, tandis que la broche négative (généralement plus courte)** se connecte à la broche **noire**. Branchez l'autre extrémité des fils de connexion à la broche 1.

Connectez le câble USB au micro:bit puis à la carte de dérivation comme indiqué sur l'image ci-dessus. En vous assurant que la couleur du fil suit la couleur des broches sur la carte de dérivation, branchez le capteur de collision sur la broche 0 et la LED Octopus sur la broche 8.

Enfin, branchez l'OLED comme indiqué sur l'image ci-dessus. Vous devriez pouvoir le brancher sur l'une des trois rangées

Étape 2 - Pré-codage

Nous devrons ajouter un paquet de code pour pouvoir utiliser les composants de notre kit. Cliquez sur **Avancé** dans le tiroir de code pour voir plus de sections de code et regardez en bas du tiroir de code pour **ajouter un package**.

Add Package ?	
Search or enter project URL	
devices Camera, remote control and other Bluetooth services	bluetooth Bluetooth services
ela ouvrira une boîte de dialogue. Effe	ectuez une recherche pour tinkercademy ou

simplement **tinker**. Cliquez sur l'icône de recherche ou appuyez sur Entrée, puis cliquez sur **tinkercademy-tinker-kit**.

Remarque : Si vous recevez un avertissement vous indiquant que certains packages seront supprimés en raison de problèmes d'incompatibilité, suivez les invites ou créez un nouveau projet dans le menu Fichier de projets.

Cliquez sur **Tinkercademy** ou **OLED** dans le **Code Drawer** pour trouver nos blocs personnalisés pour les différents composants de votre kit

Étape 3 - Codage

Search	Q	(†											G	etting	Started	ł	
👪 Basic													- +	94.) (it.	+	
⊙ Input																	
G Music																	Ť
C Led			on st	tart	191												
I Radio			Ē] ini	tialize	OLED	with	heigh	t (64) wi	dth 🔰	128	+				
C OLED				Set	up cras 	h sen	sor a	t pin	P0 •								
C Loops																	
🔀 Logic																	
≡ Variables																	
Hath																	
	у																
. Advanced																	

Après cela, utilisez des blocs sous la section Tinkercademy pour initialiser l'OLED et le capteur de collision comme indiqué sur l'image.

Search	Q											G	etting	Starte	d	
III Basic												+	-	90) 1	<i>.</i> #-	
⊙ Input																-
G Music																
C Led			4	+	÷	+	.+	÷	+	-						
I Radio				⊚ di	igital v	vrite	pin P	1 🔹 ta		+						
C OLED				■ pa	ause (m igital v	s) d vrite	100 pin P	1 • to	0	r.						
C Loops		÷		- pa	ause (m		100	÷.	+	.+.						
🔀 Logic			÷	12	+	1	÷									
≡ Variables																
🖬 Math																
	у															
. Advanced					+									+1		

Cette partie du code permet à la LED rouge de clignoter en continu. Vous pouvez régler la vitesse de clignotement en modifiant la période de pause

Puisqu'il n'y a que deux conditions, nous n'avons besoin que d'une seule instruction "else-if".

Lorsque vous appuyez sur le capteur de collision, la LED verte Octopus s'allume. Ou bien, si aucune force n'est appliquée au Crash Sensor, la LED rouge clignotera en continu.

Étape 4 - Succès !

Voilà ! Vous avez créé une simple machine d'alarme !

Capteur d'humidité pour plante -Tinkercademy

5-7 minutes

Étape 0 - Aperçu de la pré-construction

Dans ce projet, nous allons créer une centrale de surveillance dont le buzzer se déclenchera lorsqu'il n'y aura pas assez d'eau. L'OLED affichera en permanence le niveau d'humidité actuel du sol.

MATÉRIAUX : 1 x BBC micro:bit, 1 x câble micro USB, 1 x carte de dérivation, 1 x mini buzzer, 1 x OLED, 1 x capteur d'humidité, 2 x fils femelle-femelle

Notez que bien que le manuel physique de tous les kits Tinker vendus en 2019 et avant inclue un servo dans les instructions de ce projet, ce projet n'en nécessite pas. Nous nous excusons pour toute confusion causée par notre erreur.

En aparté, relevez le défi de créer un projet plus frais qui utilise le servo pour arroser votre plante quand elle a soif !

Buts

- Apprenez à connaître le buzzer, l'OLED et le capteur d'humidité
- Faire quelque chose avec un capteur d'humidité

Étape 1 - Composants

Insérez le micro:bit dans le Breakout Board et branchez le câble micro USB, puis branchez l'OLED comme indiqué dans l'image ci-dessus. Vous devriez pouvoir le brancher sur l'une des trois rangées

Connectez 2 fils de raccordement Femelle-Femelle au Buzzer. La broche **positive** (généralement plus longue) du buzzer se connecte à la broche jaune sur la carte de dérivation, tandis que la broche négative (généralement plus courte) se connecte à la broche noire. Branchez l'autre extrémité des fils de connexion à la broche 0.

Branchez le capteur d'humidité sur la broche 1. Assurez-vous que la couleur du fil correspond aux broches colorées sur la carte de dérivation.

Étape 2 - Pré-codage

Nous devrons ajouter un paquet de code pour pouvoir utiliser les composants de notre kit. Cliquez sur **Avancé** dans le tiroir de code pour voir plus de sections de code et regardez en bas du tiroir de code pour **ajouter un package**.

Add Package ?	
Search or enter project URL	
devices	bluetooth
Camera, remote control and other Bluetooth services	Bluetooth services

Cela ouvrira une boîte de dialogue. Effectuez une recherche pour tinkercademy ou

simplement **tinker**. Cliquez sur l'icône de recherche ou appuyez sur Entrée, puis cliquez sur **tinkercademy-tinker-kit**.

Remarque : Si vous recevez un avertissement vous indiquant que certains packages seront supprimés en raison de problèmes d'incompatibilité, suivez les invites ou créez un nouveau projet dans le menu Fichier de projets.

Cliquez sur **Tinkercademy** ou **OLED** dans le **Code Drawer** pour trouver nos blocs personnalisés pour les différents composants de votre kit

Search	۹	🖵 show number 🗊 🕖
III Basic		🗖 show string 🖬 🗰 😕
⊙ Input		
က Music		🖵 initialize OLED with height 🚺 🖉 width 📫 🖉
C Led		🖵 clear OLED display
I Radio		
🖵 OLED		
C Loops		
≭ Logic		
Variables		
🖩 Math		
<>> Tinkercader	ny	

Étape 3 - Codage

Search	Q											Gettir	ng Stari	ted	
Basic											2				
⊙ Input															
o Music															1
C Led		+.	+												
I Radio		÷	on st	art initi	ialize		with	height	64	width		179			
C OLED		÷.			H H	- A	÷	+	+	-	+	128			
C Loops															
🔀 Logic															
≡ Variables															
🖬 Math															
	y														
. Advanced												+			

Vous devez toujours initialiser l'OLED au début. 64 et 128 représentent respectivement la hauteur et la largeur de l'OLED.

Search	۹									4	Get	ting Sta	rted	
📰 Basic														
⊙ Input		III fore	/er	÷	<u>(</u>	+	+	÷	÷	+	÷	÷.	+	
G Music		🏟 if	' ر' 	(value	of moi	lsture	senso	r at p	oin PO			50	
C Led		then	Ģ	show	string	۱ ••• ۱	Moistu	re lev	/el is	: "		(H)	+	đ
I Radio				show	number	(value	of mo	isture	sens	or at	pin P	0 🔹	4
C OLED			Ţ	show	string	ל יינ	Water	your p	olant!	22				
C Loops			ଜ	play	tone 🕻	କ ୮ ୦	ow B	for 🔰	ନ 1	💌 bea	t			
🔀 Logic		else	Ģ	show	string	C (Your p	lant i	is in	good c	ondit	ion »		
■ Variables														
Hath														
Tinkercademy	y													
· A				+							1			

Microbit lit les valeurs du capteur d'humidité en continu. Puisqu'il n'y a que deux conditions, nous n'avons besoin que d'une seule instruction "else if".

Lorsque la valeur du capteur d'humidité est inférieure à 50, cela indique qu'il n'y a pas assez d'eau dans le pot. En conséquence, le buzzer retentira et l'OLED affichera le message « Arrosez votre plante ! ». Ou bien, si la valeur du capteur d'humidité est supérieure à 50, le buzzer ne retentira pas et l'OLED affichera le message "Votre plante est en bon état".

Étape 4 - Succès !

Voilà ! Vous avez créé une machine de surveillance d'usine !